MathDB
Mediterranian mathematics competition 2005, problem 3

Source: Mediterranian Mathematics Competition 2005, Problem 3

January 8, 2006
inequalitiescombinatorics proposedcombinatorics

Problem Statement

Let A1,A2,,AnA_1,A_2,\ldots , A_n (n3)(n\geq 3) be finite sets of positive integers. Prove, that 1n(i=1nAi)+1(n3)1i<j<knAiAjAk2(n2)1i<jnAiAj \displaystyle \frac{1}{n} \left( \sum_{i=1}^n |A_i|\right) + \frac{1}{{{n}\choose{3}}}\sum_{1\leq i < j < k \leq n} |A_i \cap A_j \cap A_k| \geq \frac{2}{{{n}\choose{2}}}\sum_{1\leq i < j \leq n}|A_i \cap A_j| holds, where E|E| is the cardinality of the set EE