China Team Selection Test 2013 TST 3 Day 2 Q2
Source: Nanjing high School , Jiangsu 25 Mar 2013
March 25, 2013
inequalities proposedinequalitiesChina TST
Problem Statement
Let be an integer and let be non-negative real numbers. Prove that\left(\frac{n}{n-1}\right)^{n-1}\left(\frac{1}{n} \sum_{i\equal{}1}^{n} a_i^2\right)+\left(\frac{1}{n} \sum_{i\equal{}1}^{n} b_i\right)^2\ge\prod_{i=1}^{n}(a_i^{2}+b_i^{2})^{\frac{1}{n}}.