MathDB
Problems
Contests
National and Regional Contests
India Contests
India IMO Training Camp
2010 India IMO Training Camp
10
Indian Team Selection Test 2010 ST4 P1
Indian Team Selection Test 2010 ST4 P1
Source:
May 23, 2010
geometry
parallelogram
inequalities
analytic geometry
trigonometry
LaTeX
complex numbers
Problem Statement
Let
A
B
C
ABC
A
BC
be a triangle. Let
Ω
\Omega
Ω
be the brocard point. Prove that
(
A
Ω
B
C
)
2
+
(
B
Ω
A
C
)
2
+
(
C
Ω
A
B
)
2
≥
1
\left(\frac{A\Omega}{BC}\right)^2+\left(\frac{B\Omega}{AC}\right)^2+\left(\frac{C\Omega}{AB}\right)^2\ge 1
(
BC
A
Ω
)
2
+
(
A
C
B
Ω
)
2
+
(
A
B
C
Ω
)
2
≥
1
Back to Problems
View on AoPS