MathDB
Problems
Contests
Undergraduate contests
Putnam
2015 Putnam
B5
Putnam 2015 B5
Putnam 2015 B5
Source:
December 6, 2015
Putnam
Putnam 2015
Putnam combinatorics
Problem Statement
Let
P
n
P_n
P
n
be the number of permutations
π
\pi
π
of
{
1
,
2
,
…
,
n
}
\{1,2,\dots,n\}
{
1
,
2
,
…
,
n
}
such that
∣
i
−
j
∣
=
1
implies
∣
π
(
i
)
−
π
(
j
)
∣
≤
2
|i-j|=1\text{ implies }|\pi(i)-\pi(j)|\le 2
∣
i
−
j
∣
=
1
implies
∣
π
(
i
)
−
π
(
j
)
∣
≤
2
for all
i
,
j
i,j
i
,
j
in
{
1
,
2
,
…
,
n
}
.
\{1,2,\dots,n\}.
{
1
,
2
,
…
,
n
}
.
Show that for
n
≥
2
,
n\ge 2,
n
≥
2
,
the quantity
P
n
+
5
−
P
n
+
4
−
P
n
+
3
+
P
n
P_{n+5}-P_{n+4}-P_{n+3}+P_n
P
n
+
5
−
P
n
+
4
−
P
n
+
3
+
P
n
does not depend on
n
,
n,
n
,
and find its value.
Back to Problems
View on AoPS