Chinese TST 2009,quiz 1
Source: Chinese TST 2009 1st quiz P3
March 19, 2009
inductioninequalitiesinequalities unsolved
Problem Statement
Let be positive real numbers. Denote by X \equal{} \sum_{i \equal{} 1}^{m}x,Y \equal{} \sum_{j \equal{} 1}^{n}y. Prove that 2XY\sum_{i \equal{} 1}^{m}\sum_{j \equal{} 1}^{n}|x_{i} \minus{} y_{j}|\ge X^2\sum_{j \equal{} 1}^{n}\sum_{l \equal{} 1}^{n}|y_{i} \minus{} y_{l}| \plus{} Y^2\sum_{i \equal{} 1}^{m}\sum_{k \equal{} 1}^{m}|x_{i} \minus{} x_{k}|