MathDB
Problems
Contests
Undergraduate contests
IMC
1999 IMC
1
Easy one
Easy one
Source: IMC 1999 day 1 problem 1
November 19, 2005
linear algebra
matrix
algebra
polynomial
complex numbers
Problem Statement
a) Show that
∀
n
∈
N
0
,
∃
A
∈
R
n
×
n
:
A
3
=
A
+
I
\forall n \in \mathbb{N}_0, \exists A \in \mathbb{R}^{n\times n}: A^3=A+I
∀
n
∈
N
0
,
∃
A
∈
R
n
×
n
:
A
3
=
A
+
I
. b) Show that
det
(
A
)
>
0
,
∀
A
\det(A)>0, \forall A
det
(
A
)
>
0
,
∀
A
fulfilling the above condition.
Back to Problems
View on AoPS