MathDB
Easy one

Source: IMC 1999 day 1 problem 1

November 19, 2005
linear algebramatrixalgebrapolynomialcomplex numbers

Problem Statement

a) Show that nN0,ARn×n:A3=A+I\forall n \in \mathbb{N}_0, \exists A \in \mathbb{R}^{n\times n}: A^3=A+I. b) Show that det(A)>0,A\det(A)>0, \forall A fulfilling the above condition.