MathDB
China Mathematical Olympiad 1989 problem3

Source: China Mathematical Olympiad 1989 problem3

October 30, 2013
functioncomplex numbersalgebra unsolvedalgebra

Problem Statement

Let SS be the unit circle in the complex plane (i.e. the set of all complex numbers with their moduli equal to 11). We define function f:SSf:S\rightarrow S as follow: zS\forall z\in S, f(1)(z)=f(z),f(2)(z)=f(f(z)),, f^{(1)}(z)=f(z), f^{(2)}(z)=f(f(z)), \dots, f(k)(z)=f(f(k1)(z))(k>1,kN),f^{(k)}(z)=f(f^{(k-1)}(z)) (k>1,k\in \mathbb{N}), \dots We call cc an nn-period-point of ff if cc (cSc\in S) and nn (nNn\in\mathbb{N}) satisfy: f(1)(c)c,f(2)(c)c,f(3)(c)c,,f(n1)(c)c,f(n)(c)=cf^{(1)}(c) \not=c, f^{(2)}(c) \not=c, f^{(3)}(c) \not=c, \dots, f^{(n-1)}(c) \not=c, f^{(n)}(c)=c. Suppose that f(z)=zmf(z)=z^m (zS;m>1,mNz\in S; m>1, m\in \mathbb{N}), find the number of 19891989-period-point of ff.