MathDB
Problems
Contests
National and Regional Contests
Poland Contests
Poland - Second Round
1974 Poland - Second Round
2
double sum t_it_j |s_i-s_j| < = 0
double sum t_it_j |s_i-s_j| < = 0
Source: Polish MO Second Round 1974 p2
September 8, 2024
algebra
Sum
inequalities
Problem Statement
Prove that for every
n
=
2
,
3
,
…
n = 2, 3, \ldots
n
=
2
,
3
,
…
and any real numbers
t
1
,
t
2
,
…
,
t
n
t_1, t_2, \ldots, t_n
t
1
,
t
2
,
…
,
t
n
,
s
1
,
s
2
,
…
,
s
n
s_1, s_2, \ldots, s_n
s
1
,
s
2
,
…
,
s
n
, if
∑
i
=
1
n
t
i
=
0
,
to
∑
i
=
1
n
∑
j
=
1
n
t
i
t
j
∣
s
i
−
s
j
∣
≤
0.
\sum_{i=1}^n t_i = 0, \text{ to } \sum_{i=1}^n\sum_{j=1}^n t_it_j |s_i-s_j| \leq 0.
i
=
1
∑
n
t
i
=
0
,
to
i
=
1
∑
n
j
=
1
∑
n
t
i
t
j
∣
s
i
−
s
j
∣
≤
0.
Back to Problems
View on AoPS