MathDB
<HKG = 90^o if AG = GH

Source: 2020 Balkan MO shortlist G2

September 14, 2021
geometryright angleBalkan MO Shortlistgeometry solvedBalkanEuler LineAngle Chasing

Problem Statement

Let G,HG, H be the centroid and orthocentre of ABC\vartriangle ABC which has an obtuse angle at B\angle B. Let ω\omega be the circle with diameter AGAG. ω\omega intersects (ABC)\odot(ABC) again at LAL \ne A. The tangent to ω\omega at LL intersects (ABC)\odot(ABC) at KLK \ne L. Given that AG=GHAG = GH, prove HKG=90o\angle HKG = 90^o . Sam Bealing, United Kingdom