MathDB
n \neq N

Source: EGMO 2022/4

April 9, 2022
EGMOalgebraEGMO2022

Problem Statement

Given a positive integer n2n \ge 2, determine the largest positive integer NN for which there exist N+1N+1 real numbers a0,a1,,aNa_0, a_1, \dots, a_N such that (1) (1) \ a0+a1=1n,a_0+a_1 = -\frac{1}{n}, and (2) (2) \ (ak+ak1)(ak+ak+1)=ak1ak+1(a_k+a_{k-1})(a_k+a_{k+1})=a_{k-1}-a_{k+1} for 1kN11 \le k \le N-1.