MathDB
Functional Equation

Source: 2013 Baltic Way, Problem 3

December 30, 2013
functionalgebra unsolvedalgebra

Problem Statement

Let R\mathbb{R} denote the set of real numbers. Find all functions f:RRf:\mathbb{R}\rightarrow\mathbb{R} such that f(xf(y)+y)+f(f(x))=f(yf(x)y)+yf(xf(y)+y)+f(-f(x))=f(yf(x)-y)+y for all x,yRx,y\in\mathbb{R}