MathDB
Cringe IE

Source: 2021 Thailand October Camp 1.2

May 6, 2023
inequalities

Problem Statement

Let a,b,c>0a,b,c>0 satisfy abca\geq b\geq c. Prove that 4a2(b+c)+4b2(c+a)+4c2(a+b)(cyca2+1b2)(cycb3a2(a3+2b3)).\frac{4}{a^2(b+c)}+\frac{4}{b^2(c+a)}+\frac{4}{c^2(a+b)} \leq \left(\sum_{cyc} \frac{a^2+1} {b^2} \right)\left(\sum_{cyc} \frac{b^3}{a^2(a^3+2b^3)}\right).