MathDB
Prove this 3 variable inequality

Source: 2019 Jozsef Wildt International Math Competition

May 19, 2020
inequalities

Problem Statement

Let xx, yy, z>0z > 0, λ(,0)(1,+)\lambda \in (-\infty, 0) \cup (1,+\infty) such that x+y+z=1x + y + z = 1. Thencycxλyλcyc1(x+y)2λ9(1419cyc1(x+1)2)λ\sum \limits_{cyc} x^{\lambda}y^{\lambda}\sum \limits_{cyc}\frac{1}{(x+y)^{2\lambda}}\geq 9\left(\frac{1}{4}-\frac{1}{9}\sum \limits_{cyc}\frac{1}{(x+1)^2} \right)^{\lambda}