MathDB
symmetric R to R FE

Source: Austria MO Final round 2023 P1

May 27, 2023
algebra

Problem Statement

Given is a nonzero real number α\alpha. Find all functions f:RRf: \mathbb{R} \to \mathbb{R} such that f(f(x+y))=f(x+y)+f(x)f(y)+αxyf(f(x+y))=f(x+y)+f(x)f(y)+\alpha xy for all x,yRx, y \in \mathbb{R}.