MathDB
Putnam 1999 B5

Source:

December 22, 2012
Putnamlinear algebramatrixvectortrigonometrycollege contests

Problem Statement

For an integer n3n\geq 3, let θ=2π/n\theta=2\pi/n. Evaluate the determinant of the n×nn\times n matrix I+AI+A, where II is the n×nn\times n identity matrix and A=(ajk)A=(a_{jk}) has entries ajk=cos(jθ+kθ)a_{jk}=\cos(j\theta+k\theta) for all j,kj,k.