MathDB
Concyclic

Source: Chinese National Olympiad 2009 P1

January 10, 2009
trigonometrygeometrytrapezoidGausscyclic quadrilateralcongruent trianglesangle bisector

Problem Statement

Given an acute triangle PBC PBC with PBPC. PB\neq PC. Points A,D A,D lie on PB,PC, PB,PC, respectively. AC AC intersects BD BD at point O. O. Let E,F E,F be the feet of perpendiculars from O O to AB,CD, AB,CD, respectively. Denote by M,N M,N the midpoints of BC,AD. BC,AD. (1) (1): If four points A,B,C,D A,B,C,D lie on one circle, then EM\cdot FN \equal{} EN\cdot FM. (2) (2): Determine whether the converse of (1) (1) is true or not, justify your answer.