Suppose S={1,2,3,...,2017},for every subset A of S,define a real number f(A)≥0 such that:
(1) For any A,B⊂S,f(A∪B)+f(A∩B)≤f(A)+f(B);
(2) For any A⊂B⊂S, f(A)≤f(B);
(3) For any k,j∈S,f({1,2,…,k+1})≥f({1,2,…,k}∪{j});(4) For the empty set ∅, f(∅)=0.
Confirm that for any three-element subset T of S,the inequality f(T)≤1927f({1,2,3}) holds.