MathDB
2017 Kosovo TST Problem 4

Source:

March 19, 2017
combinatorics

Problem Statement

For every nN0n \in \mathbb{N}_{0}, prove that k=0[n2]2n2k(n2k)=3n+12\sum_{k=0}^{\left[\frac{n}{2} \right]}{2}^{n-2k} \binom{n}{2k}=\frac{3^{n}+1}{2}