MathDB
Explicit value of N(4)

Source: China TST 2000, problem 6

May 22, 2005
functionLaTeXalgebra unsolvedalgebra

Problem Statement

Let nn be a positive integer. Denote M={(x,y)x,y are integers ,1x,yn}M = \{(x, y)|x, y \text{ are integers }, 1 \leq x, y \leq n\}. Define function ff on MM with the following properties: a.) f(x,y)f(x, y) takes non-negative integer value; b.) y=1nf(x,y)=n1\sum^n_{y=1} f(x, y) = n - 1 for 1 \eq x \leq n; c.) If f(x1,y1)f(x2,y2)>0f(x_1, y_1)f(x2, y2) > 0, then (x1x2)(y1y2)0.(x_1 - x_2)(y_1 - y_2) \geq 0. Find N(n)N(n), the number of functions ff that satisfy all the conditions. Give the explicit value of N(4)N(4).