MathDB
CIMA 2014 Problem 6

Source:

August 23, 2014
functionintegrationcollege contestsreal analysis

Problem Statement

(a) Show that if f:[1,1]Rf:[-1,1]\to \mathbb{R} is a convex and C2C^2 function such that f(1),f(1)0f(1),f(-1)\geq 0, then: minx[1,1]{f(x)}11f\min_{x\in[-1,1]} \{f(x)\} \geq - \int_{-1}^1 f''
(b) Let BR2B\subset \mathbb{R}^2 the closed ball with center 00 and radius 11. Show that if f:BRf: B \to \mathbb{R} is a convex and C2C^2 function and f0f\geq 0 in B\partial B, then: f(0)1π(B(fxxfyyfxy2))1/2f(0)\geq -\frac{1}{\sqrt{\pi}} \left( \int_{B} (f_{xx}f_{yy}-f_{xy}^2) \right)^{1/2}