MathDB
Prove this inequality on two functions

Source: 2009 Jozsef Wildt International Mathematical Competition

April 26, 2020
functioninequalities

Problem Statement

If aa, bb, c>0c>0 and abc=1abc=1, α=max{a,b,c}\alpha = max\{a,b,c\}; f,g:(0,+)Rf,g : (0, +\infty )\to \mathbb{R}, where f(x)=2(x+1)2xf(x)=\frac{2(x+1)^2}{x} and g(x)=(x+1)(1x+1)2g(x)= (x+1)\left (\frac{1}{\sqrt{x}}+1\right )^2, then (a+1)(b+1)(c+1)min{{f(x),g(x)}  x{a,b,c}\{α}}(a+1)(b+1)(c+1)\geq min\{ \{f(x),g(x) \}\ |\ x\in\{a,b,c\} \backslash \{ \alpha \}\}