MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad
1986 All Soviet Union Mathematical Olympiad
437
ASU 437 All Soviet Union MO 1986 sum of all 1/mn not an integer
ASU 437 All Soviet Union MO 1986 sum of all 1/mn not an integer
Source:
August 7, 2019
number theory
Integer
reciprocal
Sum
Problem Statement
Prove that the sum of all numbers representable as
1
m
n
\frac{1}{mn}
mn
1
, where
m
,
n
m,n
m
,
n
-- natural numbers,
1
≤
m
<
n
≤
1986
1 \le m < n \le1986
1
≤
m
<
n
≤
1986
, is not an integer.
Back to Problems
View on AoPS