MathDB
Miklos Schweitzer 1975_11

Source: Shannon entropy

December 30, 2008
probability and stats

Problem Statement

Let X1,X2,...,Xn X_1,X_2,...,X_n be (not necessary independent) discrete random variables. Prove that there exist at least n2/2 n^2/2 pairs (i,j) (i,j) such that H(X_i\plus{}X_j) \geq \frac 13 \min_{1 \leq k \leq n} \{ H(X_k) \}, where H(X) H(X) denotes the Shannon entropy of X X. GY. Katona