MathDB
IMC 1999 Problem 12

Source: IMC 1999 Day 2 Problem 6

October 27, 2020
fourier seriescomplex numberspigeonhole principleIMC

Problem Statement

Let AA be a subset of Z/nZ\mathbb{Z}/n\mathbb{Z} with at most ln(n)100\frac{\ln(n)}{100} elements. Define f(r)=sAe2πirsnf(r)=\sum_{s\in A} e^{\dfrac{2 \pi i r s}{n}}. Show that for some r0r \ne 0 we have f(r)A2|f(r)| \geq \frac{|A|}{2}.