MathDB
2006 China Second Round Olympiad Test 1 #5

Source:

September 28, 2014
logarithms

Problem Statement

Suppose f(x)=x3+log2(x+x2+1)f(x) = x^3 + \log_2(x + \sqrt{x^2+1}). For any a,bRa,b \in \mathbb{R}, to satisfy f(a)+f(b)0f(a) + f(b) \ge 0, the condition a+b0a + b \ge 0 is
<spanclass=latexbold>(A)</span> necessary and sufficient<spanclass=latexbold>(B)</span> not necessary but sufficient<spanclass=latexbold>(C)</span> necessary but not sufficient <span class='latex-bold'>(A)</span>\ \text{necessary and sufficient}\qquad<span class='latex-bold'>(B)</span>\ \text{not necessary but sufficient}\qquad<span class='latex-bold'>(C)</span>\ \text{necessary but not sufficient}\qquad <spanclass=latexbold>(D)</span> neither necessary nor sufficient<span class='latex-bold'>(D)</span>\ \text{neither necessary nor sufficient}\qquad