MathDB
x_i real numbers with sum zero, n>=3

Source: Vietnamese TST 2011 P3

April 27, 2011
inequalitiesinequalities proposed

Problem Statement

Let nn be a positive integer 3.\geq 3. There are nn real numbers x1,x2,xnx_1,x_2,\cdots x_n that satisfy: { x1x2xn; x1+x2++xn=0; x12+x22++xn2=n(n1).\left\{\begin{aligned}&\ x_1\ge x_2\ge\cdots \ge x_n;\\& \ x_1+x_2+\cdots+x_n=0;\\& \ x_1^2+x_2^2+\cdots+x_n^2=n(n-1).\end{aligned}\right. Find the maximum and minimum value of the sum S=x1+x2.S=x_1+x_2.