MathDB
n-dimensional space - ILL 1990 PRK5

Source:

September 18, 2010
geometry proposedgeometry

Problem Statement

Given a point P=(p1,p2,,pn)P = (p_1, p_2, \ldots, p_n) in nn-dimensional space . Find point X=(x1,x2,,xn)X = (x_1, x_2, \ldots, x_n), such that x1x2xnx_1 \leq x_2 \leq\cdots \leq x_n and (x1p1)2+(x2p2)2++(xnpn)2\sqrt{(x_1-p_1)^2 + (x_2-p_2)^2+\cdots+(x_n-p_n)^2} is minimal.