MathDB
IMC 1996 Problem 6

Source: IMC 1996

March 5, 2021
geometrytopology

Problem Statement

Upper content of a subset EE of the plane R2\mathbb{R}^{2} is defined as C(E)=inf{i=1ndiam(Ei)}\mathcal{C}(E)=\inf\{\sum_{i=1}^{n} \text{diam}(E_{i})\} where inf\inf is taken over all finite families of sets E1,,EnE_{1},\dots,E_{n} nNn\in \mathbb{N}, in R2\mathbb{R}^{2} such that Ei=1nEiE\subset \bigcup_{i=1}^{n}E_{i}. Lower content of EE is defined as K(E)=sup{length(L)L is a closed line segment onto which E can be contracted}\mathcal{K}(E)=\sup\{\text{length}(L) |\, L \text{ is a closed line segment onto which $E$ can be contracted}\}. Prove that i) C(L)=length(L)\mathcal{C}(L)=\text{length}(L) if LL is a closed line segment; ii) C(E)K(E)\mathcal{C}(E) \geq \mathcal{K}(E); iii) the equality in ii) is not always true even if EE is compact.