MathDB
P'(x)=nQ(x) for polynomials P, Q

Source:

October 29, 2010
algebrapolynomial

Problem Statement

Let the polynomials P(x)=xn+an1xn1++a1x+a0,P(x) = x^n + a_{n-1}x^{n-1 }+ \cdots + a_1x + a_0, Q(x)=xm+bm1xm1++b1x+b0,Q(x) = x^m + b_{m-1}x^{m-1} + \cdots + b_1x + b_0, be given satisfying the identity P(x)2=(x21)Q(x)2+1P(x)^2 = (x^2 - 1)Q(x)^2 + 1. Prove the identity P(x)=nQ(x).P'(x) = nQ(x).