MathDB
A trivial inequality

Source: French TST 2004, pb.4

May 25, 2004
inequalitiescalculusderivativefunctionAMCUSA(J)MOUSAMO

Problem Statement

Let nn be a positive integer, and a1,...,an,b1,...,bna_1,...,a_n, b_1,..., b_n be 2n2n positive real numbers such that a1+...+an=b1+...+bn=1a_1 + ... + a_n = b_1 + ... + b_n = 1. Find the minimal value of a12a1+b1+a22a2+b2+...+an2an+bn \frac {a_1^2} {a_1 + b_1} + \frac {a_2^2} {a_2 + b_2} + ...+ \frac {a_n^2} {a_n + b_n}.