MathDB
tend to infty

Source: 30-th Vietnamese Mathematical Olympiad 1992

February 17, 2007
limitinequalitiescalculuscalculus computations

Problem Statement

Let a,b,ca,b,c be positive reals and sequences {an},{bn},{cn}\{a_{n}\},\{b_{n}\},\{c_{n}\} defined by ak+1=ak+2bk+ck,bk+1=bk+2ck+ak,ck+1=ck+2ak+bka_{k+1}=a_{k}+\frac{2}{b_{k}+c_{k}},b_{k+1}=b_{k}+\frac{2}{c_{k}+a_{k}},c_{k+1}=c_{k}+\frac{2}{a_{k}+b_{k}} for all k=0,1,2,...k=0,1,2,.... Prove that limk+ak=limk+bk=limk+ck=+\lim_{k\to+\infty}a_{k}=\lim_{k\to+\infty}b_{k}=\lim_{k\to+\infty}c_{k}=+\infty.