MathDB
ISI 2019 : Problem #3

Source: I.S.I. 2019

May 5, 2019
isiIndian Statistical Institutecomplex planecomplex numbersalgebra

Problem Statement

Let Ω={z=x+iy C : y1}\Omega=\{z=x+iy~\in\mathbb{C}~:~|y|\leqslant 1\}. If f(z)=z2+2f(z)=z^2+2, then draw a sketch of f(Ω)={f(z):zΩ}f\Big(\Omega\Big)=\{f(z):z\in\Omega\} Justify your answer.