MathDB
Jensen with weaker condition?

Source: VJIMC 1998 2.4-M

August 24, 2021
inequalitiesFunctional Analysisfunctionreal analysis

Problem Statement

A function f:RRf:\mathbb R\to\mathbb R has the property that for every x,yRx,y\in\mathbb R there exists a real number tt (depending on xx and yy) such that 0<t<10<t<1 and f(tx+(1t)y)=tf(x)+(1t)f(y).f(tx+(1-t)y)=tf(x)+(1-t)f(y). Does it imply that f(x+y2)=f(x)+f(y)2f\left(\frac{x+y}2\right)=\frac{f(x)+f(y)}2 for every x,yRx,y\in\mathbb R?