MathDB
China Mathematical Olympiad 1990 problem2

Source: China Mathematical Olympiad 1990 problem2

October 18, 2013
number theory unsolvednumber theory

Problem Statement

Let xx be a natural number. We call {x0,x1,,xl}\{x_0,x_1,\dots ,x_l\} a factor link of xx if the sequence {x0,x1,,xl}\{x_0,x_1,\dots ,x_l\} satisfies the following conditions: (1) x0=1,xl=xx_0=1, x_l=x; (2) xi1<xi,xi1xi,i=1,2,,lx_{i-1}<x_i, x_{i-1}|x_i, i=1,2,\dots,l . Meanwhile, we define ll as the length of the factor link {x0,x1,,xl}\{x_0,x_1,\dots ,x_l\}. Denote by L(x)L(x) and R(x)R(x) the length and the number of the longest factor link of xx respectively. For x=5k×31m×1990nx=5^k\times 31^m\times 1990^n, where k,m,nk,m,n are natural numbers, find the value of L(x)L(x) and R(x)R(x).