MathDB
(x^2+3)(y^2+3)(z^2+3)>=(xyz+x+y+z+4)^2 over R

Source: IMOC 2018 A5

August 15, 2021
inequalities

Problem Statement

Show that for all reals x,y,zx,y,z, we have (x2+3)(y2+3)(z2+3)(xyz+x+y+z+4)2.\left(x^2+3\right)\left(y^2+3\right)\left(z^2+3\right)\ge(xyz+x+y+z+4)^2.