MathDB
JBMO 2018. Shortlist Algebra

Source:

July 11, 2019
algebraInequalityinequalities

Problem Statement

Let x,y,zx,y,z be positive real numbers . Prove: xy4+z4+yz4+x4+zx4+y4(x+y+z)74227\frac{x}{\sqrt{\sqrt[4]{y}+\sqrt[4]{z}}}+\frac{y}{\sqrt{\sqrt[4]{z}+\sqrt[4]{x}}}+\frac{z}{\sqrt{\sqrt[4]{x}+\sqrt[4]{y}}}\geq \frac{\sqrt[4]{(\sqrt{x}+\sqrt{y}+\sqrt{z})^7}}{\sqrt{2\sqrt{27}}}