Let n be a positive integer. For any positive integer k, let 0k=diag{k0,...,0} be a k×k zero matrix. Let Y=(0nAtA0n+1) be a (2n+1)×(2n+1) where A=(xi,j)1≤i≤n,1≤j≤n+1 is a n×(n+1) real matrix. Let AT be transpose matrix of A i.e. (n+1)×n matrix, the element of (j,i) is xi,j.
(a) Let complex number λ be an eigenvalue of k×k matrix X. If there exists nonzero column vectors v=(x1,...,xk)t such that Xv=λv. Prove that 0 is the eigenvalue of Y and the other eigenvalues of Y can be expressed as a form of ±λ where nonnegative real number λ is the eigenvalue of AAt.
(b) Let n=3 and a1, a2, a3, a4 are 4 distinct positive real numbers. Let a=∑1≤i≤4ai2 and xi,j=aiδi,j+ajδ4,j−a21(ai2+a42)aj where 1≤i≤3,1≤j≤4, δi,j={1 if i=j0 if i=j. Prove that Y has 7 distinct eigenvalue.