MathDB
AGMC 2021 Prelim Q4

Source:

January 10, 2023
linear algebramatrixcomplex numbersvector

Problem Statement

Let nn be a positive integer. For any positive integer kk, let 0k=diag{0,...,0k}0_k=diag\{\underbrace{0, ...,0}_{k}\} be a k×kk \times k zero matrix. Let Y=(0nAAt0n+1)Y=\begin{pmatrix} 0_n & A \\ A^t & 0_{n+1} \end{pmatrix} be a (2n+1)×(2n+1)(2n+1) \times (2n+1) where A=(xi,j)1in,1jn+1A=(x_{i, j})_{1\leq i \leq n, 1\leq j \leq n+1} is a n×(n+1)n \times (n+1) real matrix. Let ATA^T be transpose matrix of AA i.e. (n+1)×n(n+1) \times n matrix, the element of (j,i)(j, i) is xi,jx_{i, j}. (a) Let complex number λ\lambda be an eigenvalue of k×kk \times k matrix XX. If there exists nonzero column vectors v=(x1,...,xk)tv=(x_1, ..., x_k)^t such that Xv=λvXv=\lambda v. Prove that 0 is the eigenvalue of YY and the other eigenvalues of YY can be expressed as a form of ±λ\pm \sqrt{\lambda} where nonnegative real number λ\lambda is the eigenvalue of AAtAA^t. (b) Let n=3n=3 and a1a_1, a2a_2, a3a_3, a4a_4 are 44 distinct positive real numbers. Let a=1i4ai2a=\sqrt[]{\sum_{1\leq i \leq 4}^{}a^{2}_{i}} and xi,j=aiδi,j+ajδ4,j1a2(ai2+a42)ajx_{i,j}=a_i\delta_{i,j}+a_j\delta_{4,j}-\frac{1}{a^2}(a^2_{i}+a^2_{4})a_j where 1i3,1j41\leq i \leq 3, 1\leq j \leq 4, δi,j={1 if i=j0 if ij\delta_{i, j}= \begin{cases} 1 \text{ if } i=j\\ 0 \text{ if } i\neq j\\ \end{cases}\,. Prove that YY has 7 distinct eigenvalue.