MathDB
TOT 267 1990 Autumn A J1 compare nested fractions

Source:

June 8, 2024
algebrainequalities

Problem Statement

Given a=12+13+1...+...99,andb=12+13+1...+...99+1100a=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{...+\dfrac{...}{99}}}}, \,\,and\,\,\, b=\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{...+\dfrac{...}{99+\dfrac{1}{100}}}}} Prove that ab<199!100!|a-b| <\frac{1}{99! 100!} (G Galperin, Moscow)