MathDB
Strange Inequality

Source: Mediterranean MO 1999

October 11, 2012
inequalitiesinequalities unsolved

Problem Statement

Let a,b,c0a,b,c\not= 0 and x,y,zR+x,y,z\in\mathbb{R}^+ such that x+y+z=3x+y+z=3. Prove that 321a2+1b2+1c2x1+a2+y1+b2+z1+c2\frac{3}{2}\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\geq\frac{x}{1+a^2}+\frac{y}{1+b^2}+\frac{z}{1+c^2}
[color=#FF0000]Mod: before the edit, it was 32(1a2+1b2+1c2)x1+a2+y1+b2+z1+c2\frac{3}{2}\left (\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right )\geq\frac{x}{1+a^2}+\frac{y}{1+b^2}+\frac{z}{1+c^2}