MathDB
a+b+c=1, trivial

Source: Bosnia and Herzegovina 2011

May 16, 2011
inequalitiesinequalities proposed

Problem Statement

Let a,b,ca, b, c be positive reals such that a+b+c=1a+b+c=1. Prove that the inequality a1+bc3+b1+ca3+c1+ab31a \sqrt[3]{1+b-c} + b\sqrt[3]{1+c-a} + c\sqrt[3]{1+a-b} \leq 1 holds.