MathDB
Sqrt(sum of a^2+b^2/a+b) \geq sum of sqrt(2ab/3a+b+2c)

Source: 2013 Thailand October Camp Inequalities Exam p2

March 7, 2022
inequalities

Problem Statement

Let a,b,ca, b, c be positive real numbers. Prove that a2+b2a+b+b2+c2b+c+c2+a2c+a2ab3a+b+2c+2bc3b+c+2a+2ca3c+a+2b.\sqrt{\frac{a^2+b^2}{a+b}}+\sqrt{\frac{b^2+c^2}{b+c}}+\sqrt{\frac{c^2+a^2}{c+a}}\geq\sqrt{\frac{2ab}{3a+b+2c}}+\sqrt{\frac{2bc}{3b+c+2a}}+\sqrt{\frac{2ca}{3c+a+2b}}.