MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad Regional Round
1993 All-Russian Olympiad Regional Round
9.5
x^3 +y^3 = 4(x^2y+xy^2 +1) NT All-Russian MO 1993 Regional (R4) 9.5
x^3 +y^3 = 4(x^2y+xy^2 +1) NT All-Russian MO 1993 Regional (R4) 9.5
Source:
August 26, 2024
number theory
diophantine
Problem Statement
Show that the equation
x
3
+
y
3
=
4
(
x
2
y
+
x
y
2
+
1
)
x^3 +y^3 = 4(x^2y+xy^2 +1)
x
3
+
y
3
=
4
(
x
2
y
+
x
y
2
+
1
)
has no integer solutions.
Back to Problems
View on AoPS