MathDB
The derivative of a determinant

Source: Science ON 2021 grade XI/3

March 16, 2021
differentiable functionreal analysis

Problem Statement

<spanclass=latexbold>(a)</span><span class='latex-bold'>(a)</span> Let a,bRa,b \in \mathbb{R} and f,g:RRf,g :\mathbb{R}\rightarrow \mathbb{R} be differentiable functions. Consider the function h(x)=abxf(a)f(b)f(x)g(a)g(b)g(x)h(x)=\begin{vmatrix} a &b &x\\ f(a) &f(b) &f(x)\\ g(a) &g(b) &g(x)\\ \end{vmatrix} Prove that hh is differentiable and find hh'. \\ \\ <spanclass=latexbold>(b)</span><span class='latex-bold'>(b)</span> Let nNn\in \mathbb{N}, n3n\geq 3, take n1n-1 pairwise distinct real numbers a1<a2<<an1a_1<a_2<\dots <a_{n-1} with sum i=1n1ai=0\sum_{i=1}^{n-1}a_i = 0, and consider n1n-1 functions f1,f2,...fn1:RRf_1,f_2,...f_{n-1}:\mathbb{R}\rightarrow \mathbb{R}, each of them n2n-2 times differentiable over R\mathbb{R}. Prove that there exists a(a1,an1)a\in (a_1,a_{n-1}) and θ,θ1,...,θn1R\theta, \theta_1,...,\theta_{n-1}\in \mathbb{R}, not all zero, such that k=1n1θkak=θa\sum_{k=1}^{n-1} \theta_k a_k=\theta a and, at the same time, k=1n1θkfi(ak)=θfi(n2)(a)\sum_{k=1}^{n-1}\theta_kf_i(a_k)=\theta f_i^{(n-2)}(a) for all i{1,2...,n1}i\in\{1,2...,n-1\} . \\ \\ (Sergiu Novac)