MathDB
P33 [Geometry] - Turkish NMO 1st Round - 2003

Source:

May 31, 2014
geometryincenter

Problem Statement

Let GG be the intersection of medians of ABC\triangle ABC and II be the incenter of ABC\triangle ABC. If AB=c|AB|=c, AC=b|AC|=b and GIBCGI \perp BC, what is BC|BC|?
<spanclass=latexbold>(A)</span> b+c2<spanclass=latexbold>(B)</span> b+c3<spanclass=latexbold>(C)</span> b2+c22<spanclass=latexbold>(D)</span> b2+c232<spanclass=latexbold>(E)</span> None of the preceding <span class='latex-bold'>(A)</span>\ \dfrac{b+c}2 \qquad<span class='latex-bold'>(B)</span>\ \dfrac{b+c}{3} \qquad<span class='latex-bold'>(C)</span>\ \dfrac{\sqrt{b^2+c^2}}{2} \qquad<span class='latex-bold'>(D)</span>\ \dfrac{\sqrt{b^2+c^2}}{3\sqrt 2} \qquad<span class='latex-bold'>(E)</span>\ \text{None of the preceding}