MathDB
classic application of jensen

Source: bmo 1984

April 23, 2007
inequalitiesfunctionalgebran-variable inequalitycalculus

Problem Statement

Let n2n \geq 2 be a positive integer and a1,,ana_{1},\ldots , a_{n} be positive real numbers such that a1+...+an=1a_{1}+...+a_{n}= 1. Prove that: a11+a2++an++an1+a1+a2++an1n2n1\frac{a_{1}}{1+a_{2}+\cdots +a_{n}}+\cdots +\frac{a_{n}}{1+a_{1}+a_{2}+\cdots +a_{n-1}}\geq \frac{n}{2n-1}