MathDB
Inequality for solution of boundary value problem

Source: Alibaba Global Math Competition 2021, Problem 9

July 4, 2021
inequalitiesPDEanalysiscollege contests

Problem Statement

Let ε\varepsilon be positive constant and uu satisfies that {(tεx2y2)u=0,(t,x,y)R+×R×R+,yuy=0=xh,ut=0=0. \begin{cases} (\partial_t-\varepsilon\partial_x^2-\partial_y^2)u=0, & (t,x,y) \in \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}_+,\\ \partial_y u\vert_{y=0}=\partial_x h, &\\u\vert_{t=0}=0. & \end{cases} Here h(t,x)h(t,x) is a smooth Schwartz function. Define the operator eaDe^{a\langle D\rangle} \mathcal{F}_x(e^{a\langle D\rangle} f)(k)=e^{a\langle k\rangle} \mathcal{F}_x(f)(k),   \langle k\rangle=1+\vert k\vert, where Fx\mathcal{F}_x stands for the Fourier transform in xx. Show that 0Te(1s)DuLx,y22dsC0Te(1s)DhHx142ds\int_0^T \|e^{(1-s)\langle D\rangle} u\|_{L_{x,y}^2}^2 ds \le C \int_0^T \|e^{(1-s)\langle D\rangle} h\|_{H_x^{\frac{1}{4}}}^2 ds with constant CC independent of ε,T\varepsilon, T and hh.