MathDB
Find all real functions withf(x^2 + yf(z)) = xf(x) + zf(y)

Source: INMO 2005 Problem 6

August 23, 2005
functionalgebrafunctional equationalgebra unsolved

Problem Statement

Find all functions f:RRf : \mathbb{R} \longrightarrow \mathbb{R} such that f(x2+yf(z))=xf(x)+zf(y), f(x^2 + yf(z)) = xf(x) + zf(y) , for all x,y,zRx, y, z \in \mathbb{R}.