MathDB
N variables inequality

Source: 2006 china tst

May 19, 2006
inequalitiesfunctionCauchy Inequalityinequalities proposed

Problem Statement

x1,x2,,xnx_{1}, x_{2}, \cdots, x_{n} are positive numbers such that i=1nxi=1\sum_{i=1}^{n}x_{i}= 1. Prove that (i=1nxi)(i=1n11+xi)n2n+1\left( \sum_{i=1}^{n}\sqrt{x_{i}}\right) \left( \sum_{i=1}^{n}\frac{1}{\sqrt{1+x_{i}}}\right) \leq \frac{n^{2}}{\sqrt{n+1}}