MathDB
China TST 2004 product inequality

Source: China Team Selection Test 2004, Day 1, Problem 3

October 14, 2005
inequalitiesLaTeXinequalities unsolved

Problem Statement

Let k2,1<n1<n2<<nkk \geq 2, 1 < n_1 < n_2 < \ldots < n_k are positive integers, a,bZ+a,b \in \mathbb{Z}^+ satisfy i=1k(11ni)ab<i=1k1(11ni) \prod^k_{i=1} \left( 1 - \frac{1}{n_i} \right) \leq \frac{a}{b} < \prod^{k-1}_{i=1} \left( 1 - \frac{1}{n_i} \right) Prove that: i=1kni(4a)2k1. \prod^k_{i=1} n_i \geq (4 \cdot a)^{2^k - 1}.