MathDB
BMO 2014 SL A7

Source: Balkan MO 2014 Shortlist

October 1, 2016
algebrainequalities

Problem Statement

A7\boxed{A7}Prove that for all x,y,z>0x,y,z>0 with 1x+1y+1z=1\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1 and 0a,b,c<10\leq a,b,c<1 the following inequality holds x2+y21az+y2+z21bx+z2+x21cy6(x+y+z)1abc\frac{x^2+y^2}{1-a^z}+\frac{y^2+z^2}{1-b^x}+\frac{z^2+x^2}{1-c^y}\geq \frac{6(x+y+z)}{1-abc}